Tipps zur Serie 11:
Anfgabe 11.2:
a) Eigenvetproblem
b) Eigenveltoren normieren
c) A diagonalisieren mithilfe von a) & b) und
dan die Formel aussilveiben mo etnas
nird sich wiedeholf meglen zen
A C 1 a 2/12.
Anfgabe 11.3:
a) Eigenvertproblem
b) Eigenveltoren normieren
c) C diagonalisieren mithilfe von a) & b) und
dan die Formel aussilveiben mo etnas
nird sich niedeholf neglen zen.
(Ihr seht hoffentlich die Ahrlichleit zn 11.2)
Aufaclae 114.
Anfgabe 11.4:
Repetier Theorie 11 beziglich positiv
definiter Matrizen & versucht geschicht
en agumentieren.
a.i) Betraehtet den [Cern einer p.d. Matrix und
agnormentent, dass er nu den Velitor O
enthalt (beginnt mit AV=U 2=7 UTAV=UTO)
ii) Nutzta) ans um P=P-1P zu erhaltu

Antgabe 11.5 & 11.6:

Folgt der Hinneiser, es sind beides

Tüftelantgaben eher nathenatischer

Natur, welche aber gut geführt

Antgabe 11.7;

- a) Definiert $\chi^k = \begin{bmatrix} p_k \\ q_k \end{bmatrix}$ und stellt die Matrix zum Gleichungssystem unf.
- b) Es muss $x^2 = A \times = x^2$ gelfer. Entruede ihr formt um, indem ihr auf beiden seiten $-x^2$ rechnet und löst das HLGS, oder aber ihr löst das Eigenwertproblem und sucht a so, dass ihr den Eigennet 1 erhaltet. Somit habt ihr auch gleich c) gelöst.
- d) Überlegt ench, was die Eigenwete der Matrix A aussagen. Was muss für die Eigenwete gelten, damit xk nit k->0 beschankt bleibt? Betrachtet nun die in c) getundere Formel für die Ew und überlegt, für welche x die Bedingung er füllt ist.